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EXECUTIVE SUMMARY

DEVELOPING STATISTICAL LIMITS FOR USING
THE LIGHT WEIGHT DEFLECTOMETER (LWD)

IN CONSTRUCTION QUALITY ASSURANCE

Introduction

Quality control/quality assurance (QC/QA) during the compac-

tion of a roadway’s subbase and subgrade helps ensure the load-

carrying capacity of the pavement system. The traditional in-situ

compaction evaluation methods for unbound pavement layers are

predominately based on density and moisture measurements

requiring excessive time and resources, and in some cases,

equipment that can be harmful to the health of the operator.

The Light Weight Deflectometer (LWD) measures the deflection

and stiffness of unbound pavement layers under a given load,

producing a safe, reliable, rapid, and cost-effective field measurement

of compaction. Currently, INDOT determines the maximum

allowable deflections for each project individually, by constructing

an on-site test section and measuring the deflection values. The

engineering properties of the compacted construction materials

dictate how the unbound pavement layers react to different loadings.

This research investigated the feasibility of developing statistical

limits for the compaction of specified combinations of subbase

and subgrade materials in terms of their maximum allowable

LWD deflections. The intention was to eliminate the need for

establishing project site-specific test sections for purposes of

compaction quality control during pavement construction.

The number of test sections with LWD deflection readings was

limited to only two to five projects per combination of subgrade

and subbase material. As such, the LWD acceptance test sections

were identified as a second source of data. Acceptance tests are the

measured deflections collected during compaction QC/QA after a

project site-specific maximum allowable deflection is established.

Statistical limits were developed for six of the most common

subgrade and subbase combinations used for highway pavement

construction in Indiana: lime-modified, cement-modified, and

natural subgrade, as well as #53 crushed stone (53CS) subbase

overlaying these subgrades. Due to variability in the data and data

limitations, any effort to generalize the findings published in this

report must proceed with due caution.

Findings

The outcomes of this research suggest that there is consistency

in LWD deflection measurements across a limited number of test

sections for certain material types. Test section data yielded

maximum allowable deflections that did not vary significantly

between projects involving cement-modified and lime-modified

subgrades, non-modified subgrade, and six inches of #53 crushed

stone over lime-modified subgrade.

The research determined that the location of the LWD test, in

terms of proximity to the edge of the placed material, did not vary

significantly at a given test station. However, the research findings

suggest that the number of acceptance tests completed at each

station should be increased from three to seven. The average

acceptance test deflection measured by the LWD was determined

to be unequal across different projects with similar subbase and

subgrade materials. Therefore, it is recommended that the

acceptance test data should not be used as a basis to develop

statewide statistical limits.

Implementation

The statistical limits developed from test section LWD data can

be used by INDOT as a baseline for further developing statewide

maximum allowable deflections for use with the LWD. The limits

developed for the subbase layer are for the first six inches of

placed subbase over subgrade and are not applicable to thicker

subbase lifts, nor are they applicable to the second or third

subbase lift.

Stiffness modulus values were developed as part of this study,

and can be used by INDOT to assess the relative strength afforded

by the developed statistical limits. However, without an accurate

record of the nominal force applied at each LWD test, exact

stiffness values cannot be calculated. Ultimately, the modulus is

the parameter of concern. Therefore, it is suggested that

subsequent research focus on the reliability of the modulus values

provided in the LWD output. It is suggested that, as part of

implementation, data be collected to confirm whether the modulus

values, rather tha deflections, can serve as a better basis for

establishing target values for QC/QA in unbound materials used

in pavement construction.

Implementing the results of the study is expected to assist

INDOT to decide if and how to eliminate the use of project site-

specific test sections. At the current time, it is suggested that

INDOT should not abandon the use of these test sections; the

agency should continue the use of the project site-specific test

sections as part of the LWD tests for pavement construction QC/

QA. The minimum compaction requirements currently in use, in

terms of the minimum number of passes of the vibratory roller,

should be kept in place until further tests and additional data

analysis suggest otherwise.
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1. INTRODUCTION

1.1 Background

A roadway’s load-carrying capacity depends, in part,
on the strength afforded by a properly compacted
subbase and subgrade. The engineering properties of
the compacted construction materials dictate how the
unbound pavement layers react to different loadings.
Among the material properties, density, moisture
content, shear strength, and modulus of elasticity are
particularly important for quality control and quality
assurance of pavement construction (Kessler, 2009;
Meehan, Tehrani, & Vahedifard, 2012). Additionally,
pavement design methods, both the traditional empiri-
cal and the mechanistic-empirical (M-E) pavement
design methods utilize data on the pavement material
properties, especially the modulus of elasticity.

The traditional in-situ evaluation methods for road
subbase and subgrade construction, which are discussed in
detail in Chapter 2 of this report, are predominately based
on density/moisture measurements requiring equipment
that require excessive time and resources or are potentially
harmful to the health of the operator. Thus, there is a need
for more efficient field measurement that is both reliable
and safe. The Light Weight Deflectometer (LWD) is one
such equipment. The LWD measures the deflections and
stiffness of unbound pavement layers under a given load,
from which the degree of compaction can be derived. The
LWD, which was first developed in Germany for use in
pavement foundation construction, is receiving increased
attention for use in quality control/quality assurance (QC/
QA) during pavement construction (Nazzal, Abu-
Farsakh, Alshibli, & Mohammad, 2007). The LWD has
been evaluated extensively in several European countries,
notably in the United Kingdom (Fleming, Frost, &
Lambert, 2007). In the United States, the device has
already been evaluated in several states, including Kansas,
Louisiana, Minnesota, Montana, and Virginia (Davich,
Camargo, Larsen, Roberson, & Siekmeier, 2006; Hosain
& Apeagyei, 2010; Mooney & Miller, 2008; Nazzal et al.,
2007; Puppala, 2008; Siekmeier et al., 2006). The
Minnesota Department of Transportation (MnDOT)
was at the forefront of adopting its use and has already
developed a pilot specification for LWD testing (Davich et
al., 2006).

The nuclear density gauge and the volume replace-
ment equipment (such as the sand cone or balloon
device), are typically used for field measurements of
density, the material property that extensively serves as
the basis for compaction QC/QA. The moisture content
at the time of compaction dictates if an unbound layer is
compactable to the maximum density of its constituent
material. Additionally, the material’s shear strength and
stiffness depend on its moisture content. Different
equipment or techniques such as the nuclear density
gauge, direct heat method (using oven), chemical, and
electrical methods are used in the field to measure the
moisture content of road foundation materials. To
measure the soil shear strength, the dynamic cone
penetrometer (DCP) is a popular field equipment. The

material stiffness (i.e., applied force/deflection), and the
modulus of elasticity, (i.e., stress/strain) also can be
measured in the field using a Static Plate Load Test,
Falling Weight Deflectometer (FWD), and more re-
cently, a LWD (Kessler, 2009; Rahim, 2003; Romero &
Kuhnow, 2002; Vennapusa & White, 2009). The LWD
is a modulus-based measurement instrument that can be
used as a component of a compaction control process
(Ryden & Mooney, 2009).

The Indiana Department of Transportation (INDOT)
is considering implementing the LWD in field QC/QA for
the unbound layers of its highway pavements. As such,
this research investigates the feasibility of developing
statistical limits for QC/QA in terms of the maximum
allowable LWD deflection measurements. This research
seeks to develop individual limits for each combination of
subbase and subgrade material used by INDOT during
pavement construction.

The current report begins with a description of
different in-situ compaction assessment techniques,
including the LWD, followed by a statement of the
study objectives and methodology and a discussion of
the data used. Finally, the results of the study are
presented and discussed, and its conclusions and
recommendations are presented.

2. REVIEW OF CURRENT PRACTICES

The current research is concerned with the compac-
tion of the subgrade and subbase layers that comprise a
pavement system. While the number and thickness of
pavement layers varies generally, the typical construc-
tion is shown in Figure 2.1.

Some of the subgrades considered in the current
research are chemically modified prior to compaction.
Subgrades are compacted according to contract specifica-
tions and in accordance with INDOT Standard ITM
203.26. The subgrade serves two purposes; first, it provides
a platform during the construction of the pavement
system; and secondly, it ensures that excessive deflection of
the natural soil does not negatively impact the pave-
ment system (Christopher, Schwartz, & Boudreau, 2006).
INDOT draws a distinction between chemically modified
and chemically stabilized subgrades. Chemically modified
subgrades are used to reduce the moisture of the subgrade

Figure 2.1 Typical pavement system (Christopher et al.,
2006).
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to speed up the construction process. While chemically
modified subgrades add to the overall strength of the
pavement system, the additional strength is not considered
in the design of the pavement system. However, the
additional strength afforded by chemically stabilized
subgrades is taken into account in the design of the
pavement system; therefore chemically stabilized sub-
grades require more engineering than chemically modified
subgrades (INDOT, 2013). None of the subgrades
included in the current research were chemically stabilized.
This research is not intended to replace the subgrade
compaction requirements defined in each project’s con-
tract specifications or ITM 203.26. The statistical limits
developed for the various subgrade materials is intended to
shed light on the interaction between subgrade and
subgrade deflection.

The subbase is a material consisting of aggregates, of
specific thickness placed and compacted to support the
base and surface courses (Christopher et al., 2006). The
strength of the subbase is considered in the design of the
pavement system. Therefore, the expected bearing
strength needs to be assured during construction. To
this end, the current research seeks to develop statistical
limits that can be used statewide for use in quality
control and assurance during the construction of
subbase layers.

2.1 In-Situ Assessment Techniques

For each project, a full-scale trial section, along
with in-situ measurements and controlled traffic, could
arguably provide the most effective approach for
measuring pavement layer material properties for the
purpose of QC/QA in road foundation construction.
However, this approach is rather costly and may not be
feasible for relatively small projects. Laboratory tests,
on the other hand, are desirable in many instances for
purposes of preliminary design and material selection.
In addition to laboratory tests or tests under controlled
conditions, quick and reliable field tests on laid material
and prepared surfaces during construction are also
required. The portable devices are quick to implement
and have been shown to adequately mimic the transient
nature of wheel load forces, qualities that make them
more appropriate for practical application. Typically,
these devices usually measure a single deflection on the
center of a bearing plate or on the surface of the
prepared material being tested. The measured deflec-
tion may relate to the influence of one or more layers of
material and could be used to determine the field values
of parameters relevant in quality control and quality
assurance (Lambert, Fleming, & Frost, 2008).

2.1.1 Volume Replacement Devices

Volume replacement techniques include the sand
cone test which determines soil density. Other examples
include the water balloon technique and the steel shot
replacement method which is a recent military devel-
opment in volume replacement techniques. These

devices do not require calibration before they are used
and are relatively inexpensive; thus, they have become
widely used. The volume replacement techniques
measure the weight of wet in-situ soil excavated from
a prepared surface and then use a known volume of
reference material to fill the excavated hole in the
prepared surface. The wet density of the soil is
determined by dividing the wet soil weight by the
excavated volume. The excavated wet soil is dried in an
oven to obtain its moisture content. The dry density of
the soil is found using the following formula:

Dry density=(1zMoisture content of wet oil) ð2:1Þ

The most common reference material is sand. The
sand cone apparatus consists of a sand container at one
end and a large metal funnel at the other end
(Figure 2.2). These tests are conducted to measure the
density of subgrade soil according to ASTM D 1556-07.
The sand used in the test must be clean, dry, and
uniform in density and gradation. The sand requires a
uniformity coefficient (Cu5D60/D10) less than 2.0, all
particles passing 2.0 mm (Nr. 10 sieve), and less than
3% by weight passing 250 mm (Nr. 60 sieve).

First, from the prepared surface under test, soil is
excavated and carefully stored in an air-tight container
(Figure 2.3 (a)). The weight of the excavated soil is

Figure 2.2 Schematic design of sand cone apparatus (ASTM
D 1556-07).
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measured in the field and the volume of the excavated
soil is measured by pouring the reference material into
the test hole (Figure 2.3 (b)). Then, the moisture
content of the excavated soil is measured by placing it
in the oven at 110.5uC for 24 hours, as specified in
ASTM D 2216-05. Thus, both the moisture content and
dry density of the soil are measured (Berney & Kyzar,
2012; Jung, Jung, Bobet, & Siddiki, 2009).

2.1.2 Electrical Moisture-Density Devices

The Electrical Density Gauge (EDG) measures the
electrical resistance between a series of probes embedded
in subgrade soil and then the resultant resistance is
compared to a set of calibrated readings of expected field
moisture contents and soil densities. The Soil Density
Gauge (SDG) is a plate that rests above the soil surface
and computes the density as well as the moisture content
of the soil by electrical impedance spectroscopy mea-
surements (Figure 2.4). A transmitter and a receiver
produce an electromagnetic field while the frequency
generated falls within a radio frequency range. For each
of these gauges, the device must first be calibrated to
some known physical data on the unbound pavement
material before it is used to measure the moisture content
and wet and dry densities (Berney & Kyzar, 2012). The

entire measurement takes less than a minute. These non-
destructive testing devices are portable and, unlike the
nuclear gauge, do not require a certified operator to
perform as they are relatively safe for the operator
(Wacharanon, Wachirapom, & Sawangsuriya, 2009).

2.1.3 Nuclear Gauge Test

Nuclear gauge tests measure the in-situ moisture
content as well as the in-situ density of the subgrade soil
as specified in ASTM D 6938-09. This is a quick non-
destructive test that measures the soil density and water
content. The in-situ density can be measured either by
the direct transmission method or the backscatter
method. The device (Figure 2.5) consists of a source
and a detector; and radioactive gamma rays are emitted
from the source at the end of a retractable rod. The
rays/photons collide with electrons in the material and
are either scattered or absorbed, and the detector inside
the gauge remains on the surface to collect attenuated
gamma rays (photons) from the source. As the density
increases, the number of photons that are scattered
back to the detectors decreases. The rays/photons
reaching the detectors are counted for a selected time
interval; and on the basis of this count, the density of
the soil can be determined. In the direct transmission
method, the source is lowered to a known depth,

Figure 2.3 Sand cone test: (a) excavation of soil; (b) pouring reference sand into test hole (Jung et al., 2009).

Figure 2.4 Soil density gauge (SDG) (Wacharanon et al.,
2009).

Figure 2.5 Nuclear moisture-density gauge measurements
(Kim, Prezzi, & Salgado, 2010).
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whereas in the backscatter method, the source remains
on the surface. The gauges are calibrated before the
test. However, this method involves safety risks; there-
fore states enforce strict safety laws and require certified
operators. In addition, the test is prone to errors that
exist due to variations in layer thickness and due to the
effects of the underlying layers (Jung et al., 2009;
Mooney et al., 2011).

2.1.4 Clegg Hammer

The Clegg Impact Hammer or Clegg hammer is
another device used in the field for compaction QC/QA
for compacted soils. Pictured in Figure 2.6, the Clegg
hammer is a relatively simple and portable device that
measures the maximum deceleration of a free falling
hammer from a given height onto the surface of the test
material. The hammer, typically cylindrical with a
50 mm diameter and weighs 4.5 kg, is dropped from a
height of 450 mm (18 inches). The impact value (IV)
reflects the changes in the near-surface strength of the
compacted material. The Clegg hammer device is
similar to the LWD and is used to measure the
subgrade stiffness (i.e., to predict CBR values) as a
function of the deceleration rate that results from
dropping the mass. Soil with a higher bearing strength
decelerates the mass more rapidly (Boston, Robek, &
Rathom, 2012; Kim et al., 2010; Lambert et al., 2008).

2.1.5 Soil Stiffness Gauge

The soil stiffness gauge or the Geogauge is a portable
device that measures the in-situ modulus of elasticity
and the carrying capacity of the unbound pavement
layers. The 10 kg device, manufactured by the

Humboldt Manufacturing Company in Illinois, USA,
is pictured in Figure 2.7. The frequencies produced by
the device’s mechanical shaker generate a force which
will be used with the vertical displacement of the test
material to determine stiffness. The Geogauge’s weight
is transferred to the test surface via a ring-shaped foot.
The shaker produces 25 specific frequencies beginning
at 100 Hz and increasing in 4 Hz increments producing
a 9 N force. An accompanying computer outputs the
mean and standard deviation of the stiffness (HSG) for
each of the 25 frequencies (Gomes-Correia, Martins,
Caldeira, Marana das Neves, & Delgado, 2009). The
modulus of elasticity can be calculated from the
stiffness using the equation:

EG~HSG(1{v2)=(1:77R) ð2:2Þ

Where, EG5elastic modulus of soil (MPa); HSG5

Geogauge reading (MN/m); n5Poisson’s ratio; and
R5radius of the Geogauge foot (57.15 mm or 2.25 in.).

The Geogauge is a relatively new device and 23 state
highway agencies in the United States are reported to
have participated in a verification or reliability evaluation
of this equipment. The Geogauge stiffness measurements
have been used to classify base courses and have also
been correlated with the resilient modulus (Alshibli, Abu-
Farsakh, & Seyman, 2005). The modulus of elasticity
reported by the Geogauge can be influenced by a number
of factors including the in-situ moisture content, the
material density, the interaction between material layers,
and the material properties of underlying layers (Mishra,
Tutumluer, Moaveni, & Xiao, 2012).

2.1.6 Dynamic Cone Penetrometer

The Dynamic Cone Penetrometer (DCP) (Figure 2.8)
was initially developed in South Africa for field
evaluation of pavements, but it since has been widely
used in other countries such as the United Kingdom,
Australia, New Zealand, and the United States. The test
is simple, fast, and economical and can provide con-
tinuous measurements of the in-situ strengths andFigure 2.6 A 20 kg Clegg hammer (Minnesota DOT, 2007).

Figure 2.7 Humboldt geogauge/stiffness gauge (Wacharanon
et al., 2009).
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stiffness of the subgrade and other pavement layers. The
test is conducted by dropping a weight (typically 8 kg)
from a 575 mm height and recording the number of
blows versus depth. The penetration rate (PR) in mm/
blow is then calculated. This rate could be utilized to
measure many material properties including CBR, shear
strength of granular materials, subgrade resilient mo-
dulus, elastic modulus, and soil classification. These
properties of foundation materials can be routinely
assessed using the DCP, but it is not suitable for coarse
materials due to the DCP’s relatively low impact energy
and small cone size (Alshibli et al., 2005; Kim et al.,
2010; Lambert et al., 2008; Nazzal, Abu-Farsakh,
Alshibli, & Mohammad, 2004).

2.1.7 Plate Load Test

The plate load test (Figure 2.9), which has long been
used for in-situ investigations, determines soil bearing
capacity and evaluates pavement strength or stiffness.
A circular plate typically 305 mm (12 inches) in
diameter, remains in contact with the surface and is
loaded incrementally in a uniform manner. Deflections
at different loading increments are measured. The static

load is transmitted to the plate by a hydraulic jack
anchored by heavy mobile equipment. The resulting
load deflection curve is used to determine the elastic
modulus of the tested layer using the following
equation:

EPLT~2P(1-v2)=(pRd) ð2:3Þ

Where, EPLT5elastic modulus; P5applied load; R5

radius of the plate; n5Poisson’s Ratio; and d5deflec-
tion of the plate.

Different elastic moduli, the initial elastic modulus
and the reloading modulus, can be obtained be drawing
tangents on a stress-strain curve produced using data
from the plate load test (Alshibli et al., 2005; Nazzal
et al., 2004).

2.1.8 Falling Weight Deflectometer

The Falling Weight Deflectometer (FWD) is a popular
non-destructive field test that is widely used to evaluate
the properties of materials in pavement layers. The test is
conducted by applying an impulse load by dropping it
from a particular height to a 12-inch diameter circular
loading plate that remains in contact with the surface of
the pavement layers being tested. By changing the mass as
well as the drop height of weight, different loadings can be
simulated and load cells can measure the applied load.
The resulting surface deflections are measured using seven
geophone sensors positioned at various distances such as
0, 12, 18, 24, 30, 36, and 48 inches (Figure 2.10) from the
center of the loading plate. The resilience modulus of
pavement layers in a test section as well as the depth of the
underlying layers are measured with the response of the
pavement layers via geophones. The resilience moduli are
then determined by a back-calculation process with the
help of programs in microcomputers (Nazzal et al., 2004;
Rahim, 2003; Siddharthan, Norris, & Epps, 1991;
Walston & McQueen, 2000).

Figure 2.8 Schematic of the DCP device (ASTM D 6951-03)
(Jung et al., 2009).

Figure 2.9 Static plate load test (Minnesota DOT, 2007).
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2.2 Light Weight Deflectometer (LWD) and
Other Techniques

The various in-situ methods described so far have
certain drawbacks that hinder their acceptability for use
as cost-effective tools for quality assurance and quality
control in earthwork construction. A number of past
researchers have analyzed these methods and have
concluded that the static plate load test is expensive and
slow but produces replicable results and the Clegg
hammer test is quick and repeatable but yields values
that are extremely sensitive to moisture and hammer
weight. The Geogauge has been deemed unreliable as
the equipment is very sensitive to the seating conditions.
The electrical devices require inserting multiple probes
into the ground and have been found to be very
sensitive to the presence of coarse aggregate. The DCP,
which is widely used, has the following limitations: it is
resource-intensive; it often requires two people to
operate; and can be time consuming when testing in
dense soils. Also, DCP testing at great depths in dense
soil or in soil with large aggregate has been proven to be
unreliable. The FWD has been found to be suitable
only for finished road surfaces as the vehicle carrying
the device requires a relatively hard and stable surface
for the test. The FWD requires more resources than
most other devices and also is not suitable for relatively
soft surfaces such as subgrade layers. The traditional
measurement methods for soil density and moisture to
supervise earthwork construction also have their
limitations. The volume replacement and oven methods
require considerable time and resources. The popular
nuclear gauge is considered by many to be hazardous to
human health and is subject to stringent governmental
regulations: also, it can produce erroneous results in
soils that are non-uniform or have large aggregates. The
LWD is a relatively quick and less expensive method
that is reported to be a replicable test not influenced by
the presence of large aggregates, proximity to metal
reinforcement, and ‘‘fill end effects’’ (Berney & Kyzar,

2012; Mooney & Miller, 2008; Singh et al., 2010). In the
next section, we discuss the LWD in greater detail.

2.3 Light Weight Deflectometer (LWD)

The limitations of existing techniques have motivated
researchers to develop new devices that will be relatively
more robust and more accessible to different construc-
tion sites and that can easily measure the in-situ elastic
modulus of highway materials. One such device is the
Light Falling Weight Deflectometer (LFWD) or Light
Weight Deflectometer (LWD), which can be character-
ized as a portable FWD (Steinert et al., 2006). The LWD
was developed in Germany as an alternative device to
the PLT but it has become increasingly popular in other
nations as well. In Germany, road builders are required
to provide a guarantee of the quality of a road that has
been built and LWD is reported to be the instrument of
choice for such QC/QA (Kessler, 2009).

2.3.1 Basic Features

Lightweight, portable, and simple to apply for
repeated testing, the LWD has become a device of choice
for many road builders. Different types of LWD devices
are available on the market and exhibit many similarities
in the mechanics of their operation. However, design and
operational differences remain that may lead to varia-
tions in the measured results (Livneh & Goldberg, 2001;
Nazzal et al., 2004; Puppala, 2008; Ryden & Mooney,
2009; Vennapusa & White, 2009).

The schematic of a typical LWD (Figure 2.11) shows
the three major elements: the drop weight, the loading
plate, and the accelerometer that determines the
settlement. The grip at the top of the LWD is used to
hold the guide rod plumb and to limit the upward
movement of the drop weight. The top fix and release
mechanism holds the drop weight at a fixed height
while the guide rod guides the weight to drop freely.
The drop weight or the falling weight is manually raised

Figure 2.10 A typical setup of the Falling Weight Deflectometer (FWD) (Nazzal et al., 2004).
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to the bottom of the grip and is operated using the top
fix and release mechanism. The lock pin can remain
either in the locked or unlocked position. The set of
steel rings transmits the load pulse to the plate resting
on the ground. The loading plate helps in transmitting
the approximate uniform distribution of the impulse
load to the surface.

2.3.2 Operations

The operating principles of LWD are similar to those
governing the use of FWD on bound pavements.
However, the relatively lower weight of the LWD
compared to the FWD makes it more suitable for use
on unbound pavement layers such as subgrade and
subbase. Furthermore, the LWD is relatively less
expensive (Kessler, 2009). The LWD (Figure 2.12)
measures the deflection of the test layer produced from
a given drop weight, drop height, and load according
to the American Society for Testing and Materials
(ASTM) Specification 2583–07, ‘‘Standard Test Me-
thod for Measuring Deflections with a Light Weight
Deflectometer.’’ The built-in load cell and geophone
measure the time history of the load pulse and soil
velocity. The resulting integration provides a measure
of the material displacement which can be used with a
measure of the peak load to determine the modulus
values (Tehrani & Meehan, 2010).

Several test dimensions can influence the LWD
deflection readings, including the weight of the falling

Figure 2.11 Schematic of Light Weight Deflectometer (LWD) (INDOT, 2012).

Figure 2.12 LWD with 200 mm and 300 mm diameter plates
(Tehrani & Meehan, 2010).
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mass, the height at which it is released, the area where
the load is transferred to the material, the rate at which
the material is loaded, and the number and layout of
the geophones. There is the possibility of misinterpreta-
tion of the peak deflection and the resulting modulus of
elasticity because the reading may include not only the
recoverable elastic deflection but also the permanent–
plastic deflection. The peak deflection (s) of the loading
plate, once measured, is used to calculate the LWD
elastic modulus (ELWD). The following expression,
which is used to calculate the modulus, is based on
Boussinesq’s elastic half-space equation for the surface
modulus of a layered media assuming a uniform
Poisson’s ratio (n) and constant loading (Vennapusa
& White, 2009; Vennapusa et al., 2012):

ELWD~A � r � r � (1-v2)=s ð2:4Þ

Where, E5stiffness modulus (MPa or MN/m2);
A5plate rigidity factor; r5 maximum contact pressure
(kPa); r5plate radius (m); n5Poisson’s ratio (usually in
the range 0.3–0.45, depending on test material type);
and s5peak deflection (mm).

The default value of the plate rigidity factor for a
flexible plate is 2, which would simplify the expression
as follows:

ELWD~2 � r � r � (1-v2)=s ð2:5Þ

Furthermore, with uniformly distributed stress under
the plate r5P/pr2 where P is the nominal impact force
(kN), which simplifies the equation further to:

ELWD~2 � r � (1-v2)=(p � r � s) ð2:6Þ

2.3.3 Output

As stated earlier, the LWD is portable (with a weight
of approximately 15 to 25 kg depending on the type
and manufacturer), it can be operated by a single
person, and the test takes only few minutes. First, the
equipment is calibrated to deliver a maximum specified
amount of impact load and impact duration. It is
assumed that the plate is sufficiently rigid to move with
the soil and the impact load is constant. Soil deforma-
tions are calculated by integration of the accelerometer
readings. During operation, the plate is first placed
directly over level ground and three initial drops are
performed to ensure a close contact. Then another three
drops of the weight are performed, and the data
acquisition system calculates the deflection correspond-
ing to each blow and the soil’s dynamic modulus. A
typical output from the data acquisition system of an
LWD would show time history data (Figure 2.13)
which provide important insight into the soil property
(Mooney & Miller, 2009).

The typical output also provides three distinct velocities
(v) and three peak deflections (s) corresponding to the
three measurement drops of weight. The output also

includes the mean values and corresponding standard
deviation values for the velocity, v and displacement, s.
These statistical values along with the value of s/v could
help in quality assurance as well as quality control
procedures. The dynamic elastic modulus is also reported,
which can be converted into the static elastic modulus
using various calibration equations found in the literature.
Deflection values are readily comparable to target values
and thus can easily fit into quality assurance procedures.
A larger deflection in the soil is usually indicative of a
weaker soil (Boston et al., 2009).

2.3.4 Limitations

There are many factors that influence LWD values
and these should be considered while designing a
quality assurance process in any agency. These factors
include, but are not limited to, the following: size of
loading plate, plate contact stress, type and location of
deflection transducer, plate rigidity, loading rate, and
buffer stiffness. Again, the moisture content of the
material being tested has been reported to significantly
influence the field modulus-based measurements. There
is also an inverse relationship between water content
and soil moduli (Hossain & Apeagyei, 2010; Ryden &
Mooney, 2009). Also, in some cases, it is reported that
the actual depth of the material being tested is greater
than the single layer of material under consideration
and therefore is measuring a composite layer composed
of the material under consideration and underlying
subbase and subgrade materials. The resulting modulus
is therefore a composite rather than the modulus of the
single layer under consideration (Benedetto & Di
Domenico, 2012).

Figure 2.13 Typical time history data from a LWD test
(Mooney & Miller, 2009).
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2.4 Section Conclusions

Proper subbase and subgrade compaction is essential
to ensure quality in highway construction and parameters
such as the elastic modulus, density, and moisture
content are important in assessing the quality of the
road foundation. INDOT seeks to develop statistical
limits for the LWD in the form of target values, which are
expected to produce a faster, less costly, more reliable and
more direct approach to ascertain acceptable compaction
of unbound pavement layers for quality assurance
purposes. Quality assurance (QA), unlike quality control
(QC), is a proactive process that aims at preventing
problems from occurring. In the context of pavement
construction, QA is the establishment of design specifica-
tions and management principals aimed at ensuring the
proper compaction of the various pavement layers.
Currently, INDOT determines the LWD target values
(i.e., peak deflection) for each project by constructing test
sections (also referred to as test pads, calibration strips or
control strips). The target values are then used in the QC
process in which acceptance tests are conducted and the
field values are compared to the established target values.
It is sought to use statistical tools in selecting the target
values for different combinations of materials in a
manner that incorporates confidence intervals.

3. OBJECTIVES

The main objective of the current research project is
to develop statistical limits, in the form of target values
for the maximum allowable deflection measured by the
Light Weight Deflectometer (LWD) for use in QC/QA
of unbound subbase and subgrade pavement layers.
The following are the layer material types that were
initially considered in this research.

Subgrade

N Compacted Subgrade

N Chemically Modified Subgrade with Lime/Lime kiln dust

N Chemically Modified Subgrade with Cement

N Chemically Modified Subgrade with Fly Ash

N Geo-grid Reinforced Subgrade

N Mechanically Modified Subgrade

Subbase

N # 53 Crushed Stone (# 53 CS)

N # 53 Gravel (#53 GR)

N # 53 Slag

A LWD measures the deflection of the material
below the plate to a depth approximately equal to the
plate diameter (Tayabji & Lukanen, 2000). Since the
LWDs used by INDOT have a plate diameter of
300 mm (11.811 inches) and the subbase material is
typically placed in six-inch lifts, the LWD readings for
the first six inches of subbase will be influenced by both
the material properties of the subbase and the subgrade.
Therefore, the current study will investigate 24 combi-
nations of subgrade and subbase materials. The 24
combinations are composed of the 18 combinations of

subbase over subgrade and six subgrade materials
without an overlaying subbase. Ultimately, the scope of
the current research was modified due to the avail-
ability of data from INDOT’s Research Division,
Geotechnical Services, and Crawfordville District
Materials Management. A brief description of the two
main sources of LWD data, namely the test sections
and acceptance tests, along with the requisite number of
test sites, is presented below:

N Test Section: A constructed section of the roadway used
to develop maximum allowable deflection thresholds for
use in the project. A test section is comprised of 10 test
sites.

N Acceptance Test: A random station (referred to as a test
station) along the roadway comprised of three test sites.
The average deflection for the three sites must be less
than or equal to the deflection thresholds obtained from
the test section.

N Test Site: Each point (location) where the LWD is placed
in order to obtain one complete LWD test.

N Complete LWD Test: The process of obtaining a measure
of deflection for a given test site. The process is laid out
in ITM No. 508-12T as presented in Appendix A.

Originally, the research was to include data from 30
test sections for each combination of subbase and
subgrade. These 30 test sections would be evenly spread
out over the six INDOT districts. However, the lack of
existing contracts severely limited data availability. At
the request of the research project’s Study Advisory
Committee (SAC), the project scope was amended to
include data from acceptance testing. Acceptance
testing requires a greater number of LWD test sites
per contract compared to test sections, which are
comprised of only 10 LWD test sites. However, even
with the expansion of data to include acceptance testing
results, at the current time, the data are insufficient to
develop limits for all but the most commonly used
combinations of subbase and subgrade.

4. METHODOLOGY

This study sought to develop LWD deflection target
values for use in QC/QA of unbound pavement layers.
Currently, the LWD is being used in coordination
with site-specific test sections, resulting in site-specific
maximum allowable deflections for each unbound
pavement layer (Siddiki, 2012). However, it is believed
that it is not an efficient use of construction time to
conduct test sections for each contract (because the
maximum allowable deflection is material-specific and
therefore should not be influenced by the project’s
location). The following sections will discuss the current
LWD practice in use in Indiana and outline the
research methodology for the current study.

4.1 Current INDOT LWD Field Testing Procedures

4.1.1 Test Sections

Currently, INDOT uses the LWD in compaction
QC/QA for some of its pavement construction sites.
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Maximum allowable deflection values are developed for
each project site from values obtained from the test
section. The process of completing the construction and
testing of a test section is presented in Figure 4.1 and
Appendix A.

The test section is approximately 100 ft in length and
the full roadway width. Ten test sites are selected inside
the test section in accordance with the layout shown in
Figure 4.2. These ten test sites remain unchanged
between compaction passes or material placement.

Figure 4.1 Flowchart for the current procedure for LWD test sections.

Figure 4.2 Test section layout (test sites indicated by an ‘‘X’’).
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The subgrade is compacted according to contract
specifications and in accordance with INDOT Standard
ITM 203.26. One complete LWD test is conducted at
each test site. The deflection values for each site are
recorded, and the average value for the entire test
section is calculated (see Appendix B for further details).
Next, the subbase material is placed in accordance with
contract specifications, at which time the moisture
content of the material is determined by performing
the following American Association of State and
Highway Transportation Officials (AASHTO) tests on
representative samples of the aggregates; AASHTO T99
Method C, AASHTO T11, and AASHTO T27. The
moisture content should be within 23% and 21% of the
optimum moisture content.

The aggregate is then compacted with four passes of
a vibratory roller. One complete LWD test is conducted
at each test site. Appendix A presents the details of
the process of conducting a complete LWD test. The
deflection values for each site are recorded and the
average value for the entire test section is calculated.
One additional compaction pass is applied and one
LWD test is again conducted at each test site. The
deflection at each site is recorded, and the average
deflection over the entire test section is calculated. If the
difference between the average deflections is less than
0.01 mm, then compaction is complete and no further

compaction passes are required. Otherwise, the process
of applying one additional compaction pass followed
by LWD testing is repeated until two consecutive passes
result in a change in average deflection of less than
0.01 mm.

The maximum allowable deflection for the subgrade
is the average value from the ten test locations after the
LWD test on the subgrade. The maximum allow-
able deflection for the subbase is the lowest average
value from ten test locations after a compaction pass
(minimum of four passes). An example data collection
sheet is provided in Figure 4.3. Please refer to Appen-
dix C for further details.

4.1.2 Acceptance Testing

The previous section detailed the process of complet-
ing a test section for a given roadway pavement project.
The test section yields target values for maximum
allowable deflections, as measured by the LWD, for the
remainder of the project. Acceptance testing consists of
the processes of checking the in-situ compaction of the
unbound layers against the target values in accordance
with ITM 502. The average deflection across a
randomly chosen station along the alignment must be
less than or equal to the target value otherwise
additional compaction is required.

Figure 4.3 Example of test section data collection sheet.
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The random stations along the alignment are chosen
in accordance with ITM 802. At each acceptance
testing station, a complete LWD test is performed at
three sites, one site 2 ft from the left edge, one at the
center, and one 2 ft from the right edge as illustrated
in Figure 4.4.

Acceptance testing is typically carried out at a rate of
one station (three sites) per 800 tons of aggregate placed.
This results in a much greater number of test sites per
contract, and the current research therefore included

this data. It is believed that the acceptance test data are
appropriate because, by definition, the average deflec-
tion values at each station are required to be below the
allowable threshold developed from the project’s test
section. An example of the data collection sheet used for
acceptance testing is provided in Figure 4.5.

4.2 Research Methodology

In current practice, in order to use the LWD in
compaction quality control, a test section must be
constructed for each project. This control section is
used to develop the maximum allowable deflection for
the given project for each lift of subbase placed. As the
objective of this study is to determine whether statewide
threshold values could be determined (in a bid to
eliminate the need to construct test sections), the
research first determined whether there exist statistical
differences in the mean deflection values obtained from
the different projects, for the same material type and
thickness. The research therefore investigated whether
the deflection values obtained from the acceptance tests
varied significantly across different test sites within any
given project, for the same material type and thickness,
depending on whether the testing was being done along

Figure 4.5 Example of acceptance test data collection sheet.

Figure 4.4 Example of LWD test station with three LWD
test sites.
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the edge of the placed material or in the middle. Then,
the study investigated whether the mean acceptance test
deflection indicated significant variation across pro-
jects, for the same material type and thickness. After
investigating the variance in the data, the maximum
allowable deflection thresholds were developed. The
crux of the research is to determine whether statewide
limits could be generated; therefore, the subbase and
subgrade combinations that were considered were those
for which multiple-project data had been collected.

The test sections are constructed for the purpose of
establishing the maximum allowable deflection; as such,
attempts were made to ascertain whether this data
could be used to create the statewide threshold values.
Two approaches were used to develop statistical limits.
The first defined the maximum allowable deflection as
the simple mean of all projects’ test section deflections
for a given subgrade or subbase lift over subgrade. This
approach is consistent with INDOT’s current field
testing methodology.

The second approach utilized both the standard
deviation and mean of acceptance test deflection data
along with several statistical confidence intervals. The
simple mean value of the acceptance test deflections
should not be used as the maximum allowable deflection
because roughly half of the acceptance tests used to
create the threshold, that are by definition fully
compacted, would have greater deflections than would
be allowed by the limit. Therefore, several confidence
intervals were used to provide an upper bound on
the maximum allowable deflection. In this approach, the
placed material is assumed compacted unless the
mean deflection of the placed material is statistically
significantly greater than the average deflection value
obtained in the study data.

The first approach, utilizing test section data, is con-
sidered more valid as the data upon which it is based is
expected to be more consistent. In either case, the efficacy
of the thresholds developed depends on the quality of the
data and the variance observed between projects.

4.2.1 Analysis of Variance

In order to develop statewide statistical limits for
LWD deflection measurements, the data collected at
multiple locations were combined. In order to deter-
mine if the conclusions drawn from the combined data
set were statistically sound, the variance in the samples
was analyzed.

The analysis of variance (ANOVA) is the ratio of the
between-group variability and within-group variability.
The null hypothesis is that the mean values between the
groups are equal, which can be written as:

Ho : �x1~�x2 . . . ~�xj ð4:1Þ

Ha : �x1=�x2 . . .=�xj ð4:2Þ

Where, Ho5null hypotheses, Ha5alternative hypoth-
eses, and �xj5mean value for group j out of k total

groups. The between-group variability can be defined
as:

MSBetween(
1

k{1
)
Xk

j~1

nj(�xj{�x)2 ð4:3Þ

Where, MSBetween5the mean square for between-
group variability, nj5the number of observations in
group j, and �x5 the mean value for all observations.
The within-group variability can be defined as:

MSWithin(
1

N{k
)
Xnj

i~1

Xk

j~1

(�xij{�xj)
2 ð4:4Þ

Where, MSWithin5the mean square for within group
variability, N5the total number of observations, and
xij5observation i in group j.

The F value is calculated as the ratio of the mean
square for between-group variability to the mean square
for the within-group variability (F5MSB/MSW). The F
statistic is then compared to the F critical value, which is
dependent on the number of groups, the total number of
observations, and the selected significance level (a). A
5% significance value was chosen (a50.05), meaning
that if the probability value (p-value) is less than or
equal to a, the null hypothesis is rejected and the
alternative hypothesis is accepted.

4.2.2 Z-Score Calculations

Statistical limits based on acceptance test data require
the mean deflection of the placed material to be
statistically significantly greater than the mean accep-
tance test deflection value found in the current study.
Several confidence intervals were used to provide an
upper bound on the maximum allowable deflection. The
experimental setup for the one-sided test is as follows:

Za~
�x{m

s=
ffiffiffi
n
p ð4:5Þ

Where, Za5Z-score for a (Z0.0551.645), �x5 the
sample mean (mean of nine deflections), m5the
population mean (mean deflection for a given sub-
grade/subbase combination), s5the population stan-
dard deviation, and n5the number of samples.

Solving Equation 4.5 for the sample mean yields the
upper bound of the 95% confidence interval; this
implies that one would need to be 95% confident in
order to reject the null hypothesis. Otherwise, the
alternative hypothesis is accepted. Visually, this is
depicted in Figure 4.6.

For the purposes of the current study, the null
hypothesis is as follows: the mean deflection of a given
placement of material is less than or equal to the
average deflection for the given subgrade/subbase
combination.

Ho : �xƒm ð4:6Þ
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Ha : �xwm ð4:7Þ

Where, H05null hypotheses and Ha5alternative
hypotheses.

Substituting known values and solving for �x yields
the following equation:

�x~1:645(s=
ffiffiffi
n
p

){m ð4:8Þ

4.2.3 Test Section Observations

The test sections consist of 10 LWD test sites.
Additional passes by the compactor typically results in
a more compacted material, which corresponds to
smaller deflections. As stated in an earlier section, the
LWD test is repeated until two consecutive passes
result in a change in average deflection of less than
0.01 mm. This can occur for any one of two reasons:
(a) when two consecutive passes have nearly identical
average deflections (between +0.01 mm and
20.01 mm), meaning the material did not experience
further compaction and can thus be considered fully
compacted; in this instance, the test section will yield
20 observations each of which is the measured
deflection at a test site after each of the last two
passes, (b) an additional pass results in a higher
deflection than the previous pass, resulting in a
negative change in average deflection (less than
20.01 mm). In this case, the test section only yields
10 observations each of which is the deflection
measured at each test site after the penultimate com-
paction pass (the deflection measurements that yielded
the lowest average deflection).

ANOVA testing was applied to the data collected
from different contracts with the same subbase/sub-
grade material combinations to determine if the data
from different contracts can be grouped to provide a
statewide statistical limit. The resulting grouped data
set was analyzed to determine the deflection threshold
value and the required sample size.

4.2.4 Acceptance Test Observations

Recall that acceptance tests require the completion of
three LWD test sites at each test station. The
methodology implemented for the current study classi-
fied each LWD test site as a single observation instead
of classifying each test station as a single observation.
Since each complete LWD test is a single observation, a
given station (cross-section) consists of three observa-
tions. There were three distinct steps to be considered.
The first step was to determine if the LWD tests
performed along the left edge, right edge, and center of
the placed material for a given contract differ or can be
grouped together. The second was to determine if the
LWD tests from different contracts with the same
subbase/subgrade material combinations differed or
could be grouped together. Finally, the resulting
grouped data set was analyzed to determine the
deflection threshold value and the required sample size.

5. DATA AND ANALYSIS

The current study used data provided by INDOT
Research Division, INDOT Geotechnical Services, and
INDOT Crawfordville District Materials Management.
Data were requested for five test sections per combina-
tion of subbase and subgrade (30) per INDOT
management district (six) for a total of 900 test section
results. However, each pavement contract only requires
a single test section; therefore, it would have been
impractical to collect all of the requested data within
the study period. At the request of the study’s SAC, the
research scope was modified such that the results would
be based on test sections and acceptance test results and
would cover only the most commonly-used subbase and
subgrade materials. The data sought in each test record
includes:

N Type of subbase and subgrade material

N Contract identification (contract number, road number,
date)

N Subbase lift number and thickness

N Number of compaction passes

N LWD test deflections for each test site

N Optimum and measured moisture content of the material

The above data requirements are crucial in proper
analysis of material deflection and thus the compaction
and resulting bearing capacity. As is often the case
when dealing with data collected from multiple loca-
tions over the course of multiple years, several of the
data sheets did not include all the required information.
Some of the data used in this study were collected prior
to the start of the study and therefore the INDOT field
personal collecting the data were unaware of these
requirements. The study subsequently used the data
available to develop the statistical limits for LWD
deflection values for unbound layers of pavements. It is
important to note that the majority of the data reports
did not include moisture content, and moisture content
therefore was not considered in the development of the

Figure 4.6 Z-scores for the normal distribution (5% level
of significance).
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statistical limits. Previous research conducted elsewhere
(discussed earlier in this report) suggest that the
moisture content of the material highly influences the
deflection readings. Therefore, extreme caution there-
fore must be taken when implementing any results from
this study.

5.1 Test Section Data

The test sections are constructed for the purpose of
determining allowable deflection limits for a given
project; therefore, they have the potential to provide
extremely high quality data. Each test section should
include the deflection reading for the subgrade prior to
adding the first subbase lift and the deflection readings
for each subbase lift.

The number of test sections that had deflection
readings for the subgrade prior to the placement of the
subbase is presented in Table 5.1. Notice that there
were no instances of fly ash modified, mechanically
modified, or geo-grid reinforced subgrade.

The number of tests sections that yielded deflection
readings for the first six-inch lift of placed subbase is
presented in Table 5.2. Ten out of 11 projects used #53
crushed stone, making it the most common subbase type
in the sample. There were four instances where the #53
crushed stone was placed over non-chemically modified
subgrade and three instances each where it was placed
over lime-modified and cement-modified subgrade.

5.1.1 Test Section ANOVA for Inter-Project
Mean Deflection

For a given project, the maximum allowable deflec-
tion is the average value obtained from the test section.

In order to develop statewide statistical limits for the
maximum allowable deflection, data from across the
state needed to be combined and analyzed. In order to
draw conclusions based on multiple test sections, the
variance observed within each test section and between
the test sections were compared using an ANOVA test
(Equations 4.1 through 4.4).

The results of the one-way ANOVA for each
subgrade provided in Table 5.3 show that there was
no statistical evidence to support the alternative
hypothesis that the sample means are not equal. The
F-factor, which is the ratio of the between-group
variability to the within-group variability, was less than
the F-critical value in each case. The alternative
hypothesis (the mean values obtained for each test
section are unequal) was statistically significant at only
a 63%, 85%, and 82% level of confidence for cement
modified, lime modified, and non-modified subgrades,
respectively. Therefore, the alternative hypothesis was
rejected and the null hypothesis (the mean values for
the test sections are equal) was accepted. This allowed
data from multiple projects with the same subgrade
treatment to be combined. Figure 5.1 shows the normal
distributions that were fit to the subgrade mean and the
standard deviation for each project’s test section.

While the ANOVA performed on the subgrade
indicated that there was insufficient evidence to suggest
the mean deflection values from different projects were
statistically unequal, the ANOVA results for the first
subbase lift, shown in Table 5.4, suggested otherwise.
The between-group (project) variability observed in the
#53 crushed stone placed over a cement modified
subgrade is much greater than the variance observed
within each project. The resulting P-value indicated that
the mean deflection values observed in these test sections
differed with over a 99% level of confidence. This holds
true for #53 crushed stone placed over the non-modified
subgrade as well. Only the #53 crushed stone placed over
the lime modified subgrade showed consistent mean
values. The alternative hypothesis of unequal test section
deflection was statistically significant at only a 76% level
of confidence. Therefore, the null hypothesis of the mean
deflection being equal for test sections with #53 crushed
stone subbase over lime modified subgrade was accepted.
The variance in the test-section deflection values is
illustrated in the normal distributions fit to each project’s
data presented in Figure 5.2.

TABLE 5.2
Number of test sections: six-inch subbase over subgrade

Subbase

Subgrade 53 Crushed Stone 53 Gravel 53 Slag

Compacted subgrade 4 0 0

Chemically modified subgrade with lime/lime kiln dust 3 1 0

Chemically modified subgrade with cement 3 0 0

Chemically modified subgrade with fly ash 0 0 0

Geo-grid reinforced subgrade 0 0 0

Mechanically modified subgrade 0 0 0

TABLE 5.1
Number of test sections: subgrade only

Subgrade

Number of

Test Sections

Compacted subgrade 4

Chemically modified subgrade with lime/lime kiln dust 4

Chemically modified subgrade with cement 2

Chemically modified subgrade with fly ash 0

Geo-grid reinforced subgrade 0

Mechanically modified subgrade 0
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5.1.2 Test Section Data Grouped by Subbase/Subgrade

In the previous sections of the report, we showed how
ANOVA tests were carried out for each subbase/
subgrade combination collected from multiple projects
(contracts) at different locations. The results indicate that
the mean deflections were statistically different across all
projects with #53 crushed stone subbase over a cement-
modified subgrade. Likewise, the mean defections for all
projects with #53 crushed stone subbase over a non-
modified subgrade were proven to be statistically
unequal. This result means that pooling these data to
create statewide deflection thresholds could yield results
that are too relaxed for purposes of compaction QA/QC.
However, the data were grouped so that further analysis
could proceed. Table 5.5 presents the descriptive statistics
for the test section deflection values reported for each
subbase/subgrade combination.

Figure 5.3 provides the relative distribution of defle-
ction measurements for each combination of subbase
and subgrade which utilized data grouped from more
than one project. This includes lime-modified subgrade
only and the cement-modified subgrade only (that is,
prior to placing the subbase layer) and #53 crushed
stone subbase over lime-modified subgrade and non-
modified subgrade. The distributions were approxi-
mately normal. Normal distributions were fit to each
combination; these are presented in Figure 5.4.

5.2 Acceptance Test Data

The modified research scope called for ten accep-
tance test stations per combination of subbase and
subgrade. Each test station consisted of three LWD test
sites (complete LWD test per test site), one 2 ft from the

left edge of the placed material, one halfway across the
placed material, and one 2 ft from the right edge of the
placed material. Additional acceptance test site data
were included that only consisted of a single test site at
each station. The majority of this data was collected
prior to the adoption of the acceptance test require-
ments laid out in ITM 502.

As discussed previously, data collection restrictions
limited the quantity of available data. INDOT pre-
dominately uses only a few combinations of subbase
and subgrade and the available data reflected this
situation. There were no instances of #53 gravel or #53
slag being used for subbase material. Likewise, there
were no instances of fly ash or mechanically modified
subgrade. The data that were provided for analysis are
presented in Table 5.6 and Table 5.7.

Each complete LWD test is considered a single
observation; therefore, a given station (cross-section)
consists of three observations. In order to develop
statewide statistical limits, it was necessary to determine
if there were statistically significant differences across
the data collection locations. Differences that arise can
be due to differences in the data collected within a
project or between projects. Once the variance in the
data was analyzed, it could be grouped so that the
maximum allowable deflection and required sample size
could be determined.

5.2.1 Acceptance Test ANOVA for Intra-
Project Deflections

The typical acceptance test station consists of three
complete LWD tests. By analyzing the variances in data
(Equations 4.1 through 4.4) collected along the left edge,

TABLE 5.3
Test section ANOVA results: subgrade only

Compacted Subgrade Type* CM CM LM LM LM LM S S S S

Road No. I-70 US 31 US 50 US 40 I-65 US 31 SR 19 SR 10 SR 45 I-70

Contract Let 2013 2011 2012 2011 2011 2011 2011 2013 2012 2010

County Hancock Hamilton Jennings Wayne Jackson Hamilton Elkhart Newton Monroe Vigo

Sample Mean 0.282 0.254 0.305 0.289 0.340 0.266 1.179 1.099 0.936 1.371

Sample Standard Deviation 0.072 0.062 0.071 0.049 0.074 0.085 0.340 0.190 0.587 0.477

Sample Variance 0.005 0.004 0.005 0.002 0.005 0.007 0.115 0.036 0.344 0.228

Sample N 10 10 10 10 10 10 10 10 10 10

Group Mean 0.268 0.300 1.146

Between-Group Variability 0.00400 0.00959 0.32543

Within-Group Variability 0.00454 0.00505 0.18098

Comparing Variances (F) 0.882 1.900 1.798

alpha 0.05 0.05 0.05

F Critical 4.414 2.866 2.866

P-Value 0.360 0.147 0.165

Note 1: Each column is an individual project.

Note 2: Measurements in millimeters.

*CM5Cement Modified, LM5Lime Modified, S5Non-modified Soil.
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right edge, and center of the placed material, it was
possible to ascertain whether the LWD deflection read-
ings were statistically different depending on whether the
LWD reading was at the center of the placed material or
2 ft from the edge as illustrated in Figure 4.4.

Table 5.8 provides an example of the ANOVA
calculations for a given project. It was determined that
the null hypothesis cannot be rejected, and it thus was
accepted for all instances. This means that it was
appropriate to group all the data for a given project
regardless of the test site’s proximity to the edge of the
placed material.

5.2.2 Acceptance Test ANOVA for Inter-Project
Deflections

After it was determined that the data from a single
project (left, center, and right) could be grouped

together, the next step was to determine if data with
the same subbase/subgrade combination taken from
different projects (and thus from different geographical
locations) could be combined into a single dataset.
Theoretically, the geographical location should not
influence LWD deflection readings since deflection is
based on the material properties and not location.
However, material properties such as moisture content,
and construction practices such as the time between
compaction and LWD testing, can influence compac-
tion and deflection. Data limitations prevented these
factors from being included in the analysis. Therefore, it
was possible that data from different contracts could
result in statistically different maximum allowable
deflections due to inter-project differences in attributes,
including moisture content, temperature and time since
material placement. ANOVA was used to investigate
the appropriateness of grouping the data (Equations

Figure 5.1 Test section normal distributions for deflections: subgrade only.
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4.1 through 4.4). Table 5.9 provides the results of the
ANOVA analysis for lime-modified subgrade only (that
is, prior to placement of the subbase layer). The
alternative hypothesis that deflection values for differ-
ent projects with lime-modified subgrade are statisti-
cally different was accepted at a 95% level of confidence
(a50.05). This means there is strong statistical evidence
that the lime-modified subgrade LWD deflection read-
ings collected from different projects are significantly
different, and thus any analysis based on the grouped
data could yield inaccurate results.

Figure 5.5 shows the difference between the distribu-
tion curves for the acceptance test deflections recorded
at the nine projects that had lime modified subgrade
without a subbase. The plotted curves are the normal
distributions based on the observed sample mean and
standard deviation for each project. Note that the
variance in the curves for the two projects along US
421: one experienced a lower mean value and much
smaller standard deviation compared to the other.

Table 5.10 provides the results of the ANOVA
analysis for the first six-inch lift of #53 crushed stone
subbase placed over lime-modified subgrade. The
results show that there is strong statistical evidence
that the mean values from different projects were
unequal and therefore their data should not be
grouped. Comparing variances yielded an F value of
43.0 which was greater than the F critical value of 2.40.
Since the calculated F value was greater than the F
critical value, we accepted the alternative hypothesis
that the acceptance test deflection values for lime
subgrade with #53 crushed stone were statistically

different across different projects. These results are
further illustrated in Figure 5.6, where the normal
distributions for each project are produced from the
deflection mean and standard deviations.

Table 5.11 provides the results of the ANOVA
analysis for cement-modified subgrade only (that is,
prior to the placement of a subbase layer). The variance
F value of 45.31 is greater than the F critical value of
3.97, which implies non-rejection of the null hypothesis,
thus the acceptance test deflection values for cement
modified subgrade without a subbase ca ne considered
statistically different across different projects. These
results are further illustrated in Figure 5.7 which
presents the normal distributions of acceptance test
deflection values for each project.

The last subbase/subgrade combination that had
data from more than one project was #53 crushed
stone subbase over non-modified soil subgrade. The
results from the ANOVA between the two projects are
presented in Table 5.12. As was the case for the three
previous within-project ANOVA results, the null
hypothesis was not rejected, thus, the data suggest that
the defections at the two different projects are
statistically different from each other at a 95% level
of confidence. The differences in the two datasets are
apparent in the normal distribution diagrams presented
in Figure 5.8 that illustrate the mean and standard
deviation of the data from each project.

There was statistical evidence for each case where
there was data from multiple contracts (lime-modified
subgrade without subbase, lime-modified subgrade with
#53 crushed stone subbase, cement-modified subgrade

TABLE 5.4
Test section ANOVA results: 60 subbase over subgrade

Subbase over Subgrade*

CS over

CM

CS over

CM

CS over

CM

CS over

LM

CS over

LM

CS over

LM CS over S CS over S CS over S CS over S

Road No. I-70 US 31 US 231 US 50 SR 25 US 31 I-70 SR 45 SR 19 US 31

Contract Let 2013 2011 2011 2012 2011 2011 2010 2012 2011 2011

County Hancock Hamilton Tippecanoe Jennings Carroll Hamilton Vigo Monroe Elkhart Hamilton

Sample Mean 0.331 0.280 0.302 0.278 0.298 0.269 0.734 0.434 0.527 0.514

Sample Standard

Deviation

0.027 0.024 0.053 0.063 0.032 0.062 0.259 0.160 0.075 0.086

Sample Variance 0.001 0.001 0.003 0.004 0.001 0.004 0.067 0.026 0.006 0.007

Sample N 20 20 20 20 20 20 10 20 10 20

Group Mean 0.304 0.282 0.526

Between-Group

Variability

0.01327 0.00429 0.20107

Within-Group Variability 0.00134 0.00293 0.02288

Comparing Variances (F) 9.879 1.463 8.787

alpha 0.05 0.05 0.05

F Critical 3.159 3.159 2.769

P-Value 0.000 0.240 0.000

Note 1: Each column is an individual project.

Note 2: Measurements in millimeters.

*CS5#53 Crushed Stone, CM5Cement Modified, LM5Lime Modified, S5Non-modified Soil.
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without subbase, and non-modified subgrade with #53
crushed stone subbase), which indicated that data from
multiple projects are statistically different even if they
have the same subbase/subgrade material combination.
This was determined by calculating the between-group
variability, within-group variability, and resulting F
critical value for each subbase/subgrade combination
and comparing it with the corresponding F critical
value. In each case, the calculated F was greater than
the F critical value, which means the alternative
hypothesis was accepted (data for the given subbase/
subgrade combinations collected at different projects
were statistically different).

However, the SAC requested that statistical limits
should be developed nevertheless based on all available
data. For this reason, analysis continued with all data
for a given subbase/subgrade combination combined in

a single data set regardless of the contract from which
the data originated. It is important to note that the
resulting specifications derived from the data grouped
by subgrade/subbase combination were expected to be
relatively relaxed as the variance of the acceptance test
deflection readings between contracts far exceeded that
of the individual contracts.

5.2.3 Acceptance Test Data Grouped by Subbase/
Subgrade

As discussed in the previous section, there was strong
statistical evidence that the data should not be grouped,
meaning there were significant differences in LWD
deflection measurements from acceptance testing for a
given subbase/subgrade combination across different
pavement contracts or project locations. This could have

Figure 5.2 Tests section normal distributions for deflections: subbase over subgrade.
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TABLE 5.5
Descriptive statistics for grouped test section deflections

Subbase over Subgrade*

No SB over

CM CS over CM

No SB over

LM CS Over LM GR over LM No SB over S CS over S

Number of Projects 2 3 4 3 1 4 4

Sample Mean 0.268 0.304 0.300 0.282 0.339 1.146 0.526

Sample Standard Deviation 0.067 0.042 0.073 0.055 0.036 0.438 0.179

Sample Variance 0.005 0.002 0.005 0.003 0.001 0.192 0.032

Maximum 0.447 0.407 0.486 0.459 0.409 2.255 1.350

3rd Quartile 0.313 0.335 0.339 0.302 0.365 1.446 0.593

2nd Quartile 0.263 0.299 0.292 0.273 0.336 1.048 0.495

1st Quartile 0.227 0.271 0.254 0.247 0.306 0.890 0.405

Minimum 0.172 0.235 0.167 0.193 0.274 0.371 0.253

Inter-Quartile Range 0.085 0.064 0.085 0.056 0.059 0.556 0.188

Number of LWD Tests 20 60 40 60 20 40 60

Note: Measurements in millimeters.

*No SB5No Subbase, CS5#53 Crushed Stone, GR5#53 Gravel, CM5Cement Modified, LM5Lime Modified, S5Non-modified Soil.

Figure 5.3 Test section relative frequency distributions of deflections.
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been a result of differences in chemical modification
techniques, compaction techniques, time between mate-
rial placement and LWD testing, and moisture content
across different contracts. Notwithstanding this, the data

for each material type and configuration were placed in a
single group at the request of the Study Advisory
Committee, so that an average value could be developed
for each subbase/subgrade combination. Table 5.13

Figure 5.4 Test section fitted normal distributions of deflections.

TABLE 5.6
Number of acceptance tests: subgrade only

Subgrade Number of Acceptance Test Sites (number of projects)

Compacted subgrade 0

Chemically modified subgrade with lime/lime kiln dust 341 (9)

Chemically modified subgrade with cement 75 (2)

Chemically modified subgrade with fly ash 0

Geo-grid reinforced subgrade 0

Mechanically modified subgrade 0
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TABLE 5.9
ANOVA results: lime modified subgrade only

Compacted Subgrade Type* LM LM LM LM LM LM LM LM LM

Road No. US 421 SR 641 US 421 CR 300 I-74 US 6 SR 28 SR 135 SR 25

Sample Mean 0.322 0.344 0.463 0.384 0.380 0.311 0.433 0.436 0.287

Sample Standard Deviation 0.084 0.127 0.463 0.158 0.148 0.100 0.150 0.091 0.166

Sample Variance 0.007 0.016 0.214 0.025 0.022 0.010 0.022 0.008 0.027

Sample N 28 160 23 24 6 31 34 14 21

Group Mean 0.360

Between-group variability 0.0981

Within-group variability 0.0297

Comparing Variances (F) 3.3069

alpha 0.05

F Critical 1.9663

P-value 0.0012

Note 1: Each column is an individual project.

Note 2: Measurements in millimeters.

*CM5Cement Modified, LM5Lime Modified, S5Non-modified Soil.

TABLE 5.7
Number of acceptance tests: 60 subbase over subgrade

Subbase Number of Acceptance Test Sites (number of projects)

Subgrade 53 Crushed Stone 53 Gravel 53 Slag

Compacted subgrade 61(2) 0 0

Chemically modified subgrade with lime/lime kiln dust 312 (5) 0 0

Chemically modified subgrade with cement 30 (1) 0 0

Chemically modified subgrade with fly ash 0 0 0

Geo-grid reinforced subgrade 109 (1) 0 0

Mechanically modified subgrade 0 0 0

Note: 1 station is typically comprised of 3 LWD test sites; however some older records have only one or two LWD test sites per station.

TABLE 5.8
Example acceptance test ANOVA results: intra-project defleciton

Type LWD Directly on Lime Kiln Dust Modified Soil Subgrade

Location 29 from Left Shoulder Center 29 from Right Shoulder

Sample Mean 0.2870 0.2911 0.2846

Sample Standard Deviation 0.1597 0.1726 0.1655

Sample Variance 0.02549 0.02978 0.02739

Sample N 21 21 21

Group Mean 0.2875

Between-group variability 0.000229

Within-group variability 0.027554

Comparing Variances (F) 0.008304

alpha 0.0500

F Critical 3.1504

P-value 0.9917. 0.05 thus we can’t reject the null hypothesis

Note: Measurements in millimeters.
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Figure 5.5 Acceptance test normal distributions: lime modified subgrade only.

Figure 5.6 Acceptance tests normal distributions: #53 crushed stone subbase over lime modified subgrade.

TABLE 5.10
ANOVA results: 53 CS subbase over lime modified subgrade

Subbase over Subgrade* CS over LM CS Over LM CS over LM CS over LM CS over LM

Road No. SR 25 US 52 US 421 SR 25 SR 25

Sample Mean 0.392 0.282 0.381 0.571 0.372

Sample Standard Deviation 0.164 0.095 0.066 0.214 0.152

Sample Variance 0.027 0.009 0.004 0.046 0.023

Sample N 45 114 47 67 39

Group Mean 0.386

Between-group variability 0.8807

Within-group variability 0.0205

Comparing Variances (F) 43.0090

alpha 0.05

F Critical 2.4011

P-value 0.0000

Note 1: Each column is an individual project.

Note 2: Measurements in millimeters.

*CS5#53 Crushed Stone, CM5Cement Modified, LM5Lime Modified, S5Non-modified Soil.
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presents the descriptive statistics for the data grouped by
the combination of subgrade and subbase. It is strongly
suggested that the factors contributing to the large
population variances need to be investigated in order to
appropriately implement the research findings. The
cement-modified subgrade with #53 crushed stone
subbase had the lowest population variance (0.036
mm); however, it is important to note that all of this
data were collected from a single contract. The
combinations that had data collected from multiple
contracts, such as lime-modified subgrade with #53
crushed stone subbase had much greater population
variances. As may be expected, for materials with data

from only one project, the population variance would
increase dramatically after such data are supplemented
with data from additional projects.

Figure 5.9 provides the relative distribution of
deflection measurements for each combination of
subbase and subgrade that has data grouped from
more than one project. This includes lime-modified and
cement-modified subgrades (prior to placing a subbase
layer) and #53 crushed stone subbase over lime-
modified subgrade and non-modified subgrade. The
distributions were approximately normal. Normal
distributions were fit to each combination and are
presented in Figure 5.10.

TABLE 5.11
ANOVA results: cement modified subgrade without subbase
(in mm)

Compacted Subgrade Type* CM CM

Road No. US 231 I-69

Sample Mean 0.152 0.295

Sample Standard Deviation 0.051 0.114

Sample Variance 0.003 0.013

Sample N 33 42

Group Mean 0.232

Between-group variability 0.3813

Within-group variability 0.0084

Comparing Variances (F) 45.3097

alpha 0.05

F Critical 3.9720

P-value 0.0000

Note 1: Each column is an individual project.

Note 2: Measurements in millimeters.

*(CM5Cement Modified, LM5Lime Modified, S5Non-modified

Soil).

TABLE 5.12
ANOVA results: #53 crushed stone subbase over non-
modified subgrade

Subbase over Subgrade Type* CS over S CS over S

Road No. I-70 CR 600

Sample Mean 0.633 0.387

Sample Standard Deviation 0.148 0.121

Sample Variance 0.022 0.015

Sample N 15 46

Group Mean 0.448

Between-group variability 0.6864

Within-group variability 0.0163

Comparing Variances (F) 42.0349

alpha 0.05

F Critical 4.0040

P-value 0.0000

Note 1: Each column is an individual project.

Note 2: Measurements in millimeters.

*CS5#53 Crushed Stone, CM5Cement Modified, LM5Lime

Modified, S5Non-modified Soil.

TABLE 5.13
Discriptive statisitics for grouped acceptance test deflections

Subbase over Subgrade* No SB over LM CS over LM No SB over CM CS Over CM CS over S CS over GG

Number of Projects 9 5 2 1 2 1

Sample Mean 0.360 0.386 0.232 0.220 0.448 0.513

Sample Standard Deviation 0.177 0.178 0.116 0.036 0.166 0.169

Sample Variance 0.031 0.032 0.013 0.001 0.027 0.029

Maximum 1.873 1.533 0.653 0.311 0.947 1.494

3rd Quartile 0.416 0.463 0.282 0.239 0.532 0.578

2nd Quartile 0.327 0.337 0.215 0.22 0.399 0.469

1st Quartile 0.251 0.257 0.15 0.19 0.318 0.408

Minimum 0.112 0.129 0.055 0.167 0.207 0.268

Inter-Quartile Range 0.165 0.207 0.133 0.049 0.214 0.17

Number of LWD Tests 341 312 75 30 61 109

Note 1: Measurements in millimeters.

*No SB5No Subbase, CS5#53 Crushed Stone, CM5Cement Modified, LM5Lime Modified, S5Non-modified Soil, GG5geogrid.
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Figure 5.8 Acceptance tests normal distributions: #53 crushed stone subbase over unmodified subgrade.

Figure 5.7 Acceptance tests normal distributions: cement-modified subgrade only.
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Figure 5.9 Acceptance tests distributions.

26 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2014/10



6. RESULTS

From the data analysis, statistical limits, in terms of
the maximum allowable deflection, were developed for
six combinations of subbase and subgrade materials.
This chapter discusses these statistical limits for various
confidence intervals. The chapter begins with an analy-
sis of the sample size required when implementing the
statistical limits.

6.1 Sample Size

For each combination of subbase and subgrade, the
required number of LWD deflection readings taken at
each location will depend on the subbase/subgrade
population mean, the population standard deviation,
the acceptable type 1 error (a), the acceptable type two
error (b), and the significant change from the popula-
tion mean and sample mean. The acceptable type 1
error, also known as the significance level, is set to 0.05
or 5%; and the acceptable type 2 error, equivalent to 1 –
P (statistical power), is set to 0.10. The significant
change from the population mean was set to 1.645

times the population standard deviation. The number
of sample readings was determined using the following
equation (Ott & Lognecker, 2010):

n~(ZazZb)2(2s2)=(m1{m2)2 ð6:1Þ

Where, n5number of samples required, Za5 z-score
for a (Z0.0551.645), Zb5 z-score for b (Z0.1051.28),
s5population standard deviation, m15population
mean, and m25m1 minus the significant change from
the population mean (1.645 s).

The required sample size for a given placement of
material (number of LWD test sites) was determined to
be 6.329. The required number of LWD tests was the
same regardless of material types because the values of
a and b were held constant and the significant change
from the population mean was set as a proportion of
the standard deviation (1.645 s). Recall that the current
LWD field testing procedure calls for three LWD tests
at each station, one 2 ft from each edge and one in the
middle. These three tests are used to represent a single
placement of aggregate (800 tons). The sample size
calculations show that the number of LWD tests

Figure 5.10 Acceptance tests normal distributions or deflections.
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conducted at each test station should be increased from
three to seven.

6.2 Statistical Limits for Maximum Allowable Deflection

The previous chapter detailed the process of analyz-
ing the variance in test section and acceptance test
LWD deflection values. This analysis is summarized in
Table 6.1 and Table 6.2.

The results of the subgrade analysis strongly suggest
that the test section data are better suited to develop
statewide statistical limits for the maximum allowable
deflection measured using the LWD. This can be seen
by comparing the P-values corresponding to the test
section projects and acceptance test projects for each
subgrade type. In the case of the cement and lime
modified subgrade, the mean deflection values obtained
from different projects was accepted as statistically
equal across project test sections but unequal across
project acceptance tests. This is further illustrated in the
larger standard deviations in the acceptance test data.

For the cement-modified subgrade, the mean of the
acceptance test data is 0.036 mm lower than the test
section. This is a logical result because, for a given
project, the acceptance tests must be less than or equal
to the test section mean value. However, since not every
project’s acceptance test data were accompanied by the
corresponding test section data, there is the possibility

that the average acceptance test deflection across all
projects could be greater than the average test section
deflection across all projects. This is apparent in the
lime-modified subgrade datasets. The average accep-
tance test deflection across the nine projects was
determined to be 0.360 mm whereas the average test
section deflection was 0.300 mm.

In the case of the first six-inch subbase lift over
subgrade, the only case of rejection of the alternative
hypothesis (the mean deflection across projects is
unequal) is the test section data for #53 crushed stone
over lime modified subgrade. In all other instances,
there was evidence that the mean deflection is statisti-
cally different across projects. Similar to the subgrade
results, the #53 crushed stone over cement modified
subgrade mean acceptance test deflection was less than
the average test section deflection, whereas the #53
crushed stone over lime modified subgrade had the
opposite relationship. It is important to note that there
was only one project that had acceptance test data for
#53 crushed stone over cement-modified subgrade. It is
expected that the standard deviation was lower than the
test section deflection for this reason, which included
data from three separate projects.

The current INDOT field testing procedures for
compaction acceptance testing using the LWD requires
the mean acceptance test deflection be less than or equal
to the mean value obtained from the project’s test section.

TABLE 6.1
Subgrade summary

Subbase None None None

Subgrade

Cement Modified Lime Modified Non-Modified

Test Section Accept. Test Test Section Accept. Test Test Section Accept. Test

Mean 0.268 0.232 0.300 0.360 1.146 N/A

Standard Deviation 0.067 0.116 0.073 0.177 0.438 N/A

P-Value 0.360 0.000 0.147 0.001 0.165 N/A

# of LWD Test Sites 20 75 40 341 40 N/A

# of Projects 2 2 4 9 4 N/A

Note: Measurements in millimeters.

*P-Values less than 0.05 indicate acceptance of the alternative hypothesis (mean deflection across projects is unequal).

TABLE 6.2
Six-inch lift of #53 crushed stone subbase over subgrade summary

Subbase # 53 CS # 53 CS # 53 CS

Subgrade

Cement Modified Lime Modified Non-Modified

Test Section Accept. Test Test Section Accept. Test Test Section Accept. Test

Mean 0.304 0.220 0.282 0.386 0.526 0.513

Standard Deviation 0.042 0.036 0.055 0.178 0.179 0.169

P-Value* 0.000 N/A 0.240 0.000 0.000 0.000

# of LWD Test Sites 60 30 60 312 60 61

# of Projects 3 1 3 5 4 2

Note: Measurements in millimeters.

*P-Values less than 0.05 indicate the alternative hypothesis is accepted (mean deflection across projects is unequal).
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6.2.1 Subgrade Maximum Allowable Deflection

In the previous section, it was stated that the number
of LWD tests completed at each test station should be
increased to seven. The study seeks to develop an upper
limit for the average deflection of the acceptance
testing. If the average deflection is greater than the
limit, additional compaction is required. It may be
recalled that in Chapter 4, it was stated that the
statistical limits could be defined differently depending
on the source of the data. If the data are obtained from
test sections, then the maximum allowable deflection is
defined as the mean deflection. If the data are obtained
from the acceptance tests, then the maximum allowable
deflection is based on the statistical distance from the
mean.

The maximum allowable deflections for the subgrade
are determined by applying Equations 4.5 through 4.7
to the population parameters in Table 6.3. A 90% level
of confidence was used in the acceptance test approach.
It must be emphasized that this does not indicate that if
the average of seven LWD deflections is less than the
limit, there is a 90% level of confidence that the
material is compacted; rather, it means that one cannot
be 90% confident the material is not compacted.

The maximum allowable deflections based on test
station data and acceptance test data differ for each
subgrade. The values are presented in Figure 6.1, where
the distributions based on test sections and acceptance
test are presented with the corresponding maximum
allowable deflections.

The test sections provided lower and thus tighter
values of the maximum allowable deflections. It may be
recalled from Table 6.1 that only the test section data
showed a lack of variance across projects. For this
reason and because it is believed that the data collection
at test sections is superior to that of acceptance testing
(as discussed at length earlier in the report), any
implementable aspect of the study results should be
based on the test section data. However, extreme
caution should be used when implementing any of
the study’s results. The original research proposal
requested data from 30 projects; however, the statistical
limits developed are based on as few as two projects for
certain material types. Generalizing the results from
such a limited number of projects to all projects

involving that material type at any location in the state
could result in the erroneous conclusion that an
uncompacted material is adequate because it is seen
to have has passed the threshold. The implications of
this are somewhat limited for subgrade as INDOT does
not include modified or non-modified subgrade in the
calculation of the overall pavement strength. However,
the strength of the subbase is included in the calculation
of the pavement’s strength.

6.2.2 Six-Inch Subbase Lift Over Subgrade Maximum
Allowable Deflection

Unlike the subgrade data, which had multiple
material types with deflections that did not vary across
project test sections, only #53 crushed stone over lime
modified subgrade had deflection values that did not
vary across project test sections. Recall from the results
presented in Table 5.4 that #53 crushed stone over
cement-modified subgrade or non-modified subgrade
had mean deflections that varied across projects. For
this reason, extreme caution must be used when
implementing the findings. The maximum allowable
deflections for the first six-inch lift of subbase over
subgrade are presented in Table 6.4. A 90% level of
confidence was used in the acceptance test approach.

The maximum allowable deflections are presented in
Figure 6.2, where the distributions based on test
sections and acceptance testing are presented along
with the corresponding maximum allowable deflections.

Similar to the results from the subgrade, the test
sections provided lower maximum allowable deflections
than the acceptance tests. In the case of the acceptance
tests, it is important to note that the maximum
allowable deflection would decrease with decreasing
levels of confidence, meaning it is more likely to reject
the null hypothesis.

Even greater care must be taken when implementing
the subbase results. Unlike the subgrade, the subbase is
included in the determination of pavement strength. An
un-compacted subbase layer could result in lower
overall pavement strength. Again, the number of
projects available to include in the study was limited
and great care must be taken when generalizing to a
larger population.

TABLE 6.3
Maximum allowable deflection for subgrades

Subbase None None None

Subgrade

Cement Modified Lime Modified Non-Modified

Test Section Accept. Test Test Section Accept. Test Test Section Accept. Test

Mean (mm) 0.268 0.232 0.3 0.36 1.146 N/A

Standard Deviation (mm) 0.067 0.116 0.073 0.177 0.438 N/A

Confidence N/A 90% N/A 90% N/A N/A

Number of LWD Tests Required 7 7 7 7 7 N/A

Maximum allowable deflection 0.268 0.288 0.3 0.446 1.146 N/A
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TABLE 6.4
Maximum allowable deflection for six-inch subbase lift over subgrades

Subbase #53 Crushed Stone #53 Crushed Stone #53 Crushed Stone

Subgrade

Cement Modified Lime Modified Non-Modified

Test Section Accept. Test Test Section Accept. Test Test Section Accept. Test

Mean (mm) 0.304 N/A 0.282 0.386 0.526 0.513

Standard Deviation (mm) 0.042 N/A 0.055 0.178 0.179 0.169

Confidence 0 N/A 0.24 0 0 0

Number of LWD Tests Required N/A 90% N/A 90% N/A 90%

Maximum allowable deflection 7 N/A 7 7 7 7

Figure 6.1 Comparison of maximum allowable deflection for different subgrade materials.
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6.2.3 Subbase Stiffness Modulus

The modulus of the subbase layer can be approxi-
mated using Boussinesq’s elastic half space calculations
(Equations 2.4 through 2.6). First, one must assume,
for the material, a uniform Poisson ratio which can
range between 0.3 and 0.45. Next, a nominal impact
force needs to be calculated; however, since the velocity
output for each LWD drop was not recorded, a value
between 1 and 15 kN will be assumed (Nazzal et al.,
2004). The calculated modulus values are presented in
Table 6.5. It can be seen that the modulus values can
vary greatly. For this reason, these values are for
information purposes only. It is suggested that further
research be conducted to determine if, compared to the

deflection readings, the modulus values directly out-
putted from the LWD would serve better in the QC/QA
of unbound pavement layers.

It is important to note that while the previous
sections provided maximum allowable deflections for
various subgrade/subbase combinations and the corre-
sponding stiffness modulus, there are statistically
significant differences between the different projects
used in the analysis. Consequently, the statistical limits
based on the resulting data set are potentially com-
promised. Therefore, further research should be con-
ducted to investigate the underlying causes of the wide
geospatial variation in LWD deflection values observa-
tion across multiple contracts.

Figure 6.2 Comparison of maximum allowable deflections for six-inch subbase lift over different subgrade types.
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7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Discussion and Conclusions

This study investigated the feasibility of developing
statistical limits for compaction of unbound aggregate
layers in roadway pavement construction in terms of
the maximum allowable LWD deflection measurements
for given subbase and subgrade combination. Two
different data sources were investigated. The first was
data obtained from test sections conducted at multiple
projects. The data were from test sections that had been
constructed for the purpose of determining project-
specific maximum allowable deflections. For each of
the three different subgrade material types (lime modi-
fied, cement modified, and non-modified) and one
subbase and subgrade combination (#53 crushed stone
over lime modified subgrade), it was found that the
deflections do not vary significantly across different
projects; therefore, statewide statistical limits could
potentially be developed. However, the number of test
sections available for our analysis was severely limited.
In some cases, the limits were developed based on as
few as two test sections so extreme caution must be
used when generalizing these findings to the entire state.

The second source of data was acceptance tests which
are conducted to ensure quality control during con-
struction. These tests were determined to be appropriate
to consider because, by their definition, they must be less
than or equal to the maximum allowable deflection
determined from the project’s test section. It was
determined that there were no statistically significant
differences in acceptance test deflections measured at
2 ft from each edge of the construction area and at
halfway across the width of the construction area within
a single roadway pavement project. However, there is
compelling evidence that the acceptance test deflections
from different contracts using the same subbase/sub-
grade combinations were statistically different. The
statistical test to determine compaction was set up such

that the null hypothesis is that the field compaction for a
given layer is satisfactory (100% field compaction) and
the alternative hypothesis being tested is that the layer of
material requires further compaction. The combined
population of subbase/subgrade deflection data had a
larger-than-expected variance, yielding a lenient statis-
tical limit (maximum allowable deflection). The statis-
tical limits for six combinations of subgrade and
subbase material developed are presented in Table 7.1.

The overall appropriateness of the results is depen-
dent on the quality of the data collected. Large
population variances could be due to differences in
compaction techniques across projects, differences in
time intervals between material placement and testing,
or differences in material properties (such as moisture
content) that were not included in the available data
and therefore were not taken into account in the study.

Generally, within a contract, there is confidence that
the test pads generate control measurements that can be
used reliably to check the adequacy of compaction at
that site. However, across different contract locations,
even for the same material type, there is so much
variability that we cannot guarantee that the control
measurements generated from a limited number of test
sections (pads) can be confidently transferred to
another site.

7.2 Recommendations

Caution must be taken when generalizing the results
from this study to projects across Indiana. The current
study relied on a limited number of projects to develop
the statistical limits; and while the test section data did
yield statistical limits for three separate subgrade types,
only one statistical limit for subbase based on consistent
data was determined. Furthermore, the limits developed
for the subbase are for the first six inches of subbase
placed over subgrade. Since the LWD measures the
deflection of approximately 12 inches of material below

TABLE 6.5
Approximate stiffness modulus for six-inch subbase lift over subgrades

Subbase # 53 Crushed Stone # 53 Crushed Stone # 53 Crushed Stone

Subgrade

Cement Modified Lime Modified Non-Modified

Test Section Accept. Test Test Section Accept. Test Test Section Accept. Test

Mean (mm) 0.304 N/A 0.282 0.386 0.526 0.513

Standard Deviation (mm) 0.042 N/A 0.055 0.178 0.179 0.169

P-Value 0 N/A 0.24 0 0 0

Confidence N/A 90% N/A 90% N/A 90%

Number of LWD Tests Required 7 N/A 7 7 7 7

Maximum allowable deflection 0.304 N/A 0.282 0.472 0.526 0.595

Average

Assumptions

Assumed Nominal Impact Force 7 7 7 7 7

Assumed Poisson Ratio 0.35 0.35 0.35 0.35 0.35

Stiffness Modulus 63.52 68.48 40.89 36.71 32.46

Conservative

Assumptions

Assumed Nominal Impact Force 3 3 3 3 3

Assumed Poisson Ratio 0.45 0.45 0.45 0.45 0.45

Stiffness Modulus 23.04 24.83 14.83 13.31 11.77
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the device, the limits developed are not applicable to
thicker subbase lifts, nor are they applicable to any
additional lifts for the subbase. There was inadequate
data to construct deflection limits for any further lifts
for the subbase material.

It is recommended that INDOT revisit the number of
acceptance tests required for each placement of
material. Currently, INDOT requires three measure-
ments across the subgrade, whereas this study suggests
increasing the number of measurements to seven. This
study did determine that proximity to the edge of the
placed material (2 ft from the edge compared to the
center) is statistically insignificant, meaning the addi-
tional four required LWD test could be spread out
across the station.

The stiffness modulus values developed as a result of
the test section or acceptance test data are for compara-
tive purposes only. Without knowing the nominal force
applied at each LWD test, accurate stiffness values
cannot be calculated. Since the modulus is the parameter
of concern, it is suggested that subsequent research focus
on the reliability of the modulus values provided in the
LWD output; it is quite possible that the modulus values
may serve as a superior criterion for establishing target
values for purposes of QC/QA during placement of
unbound layers in pavement construction.

Going forward, it is suggested that INDOT continue
the use of site-specific test pads for use in conjunction
with LWD testing in pavement construction QC/QA.
This is particularly critical for projects that require
subbase lifts exceeding a single six-inch thickness. In all
cases, the minimum compaction requirements currently

in use, in terms of the minimum number of passes of the
vibratory roller, should be kept in place.
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APPENDIX A. LWD FIELD TESTING PROCEDURES
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